Stress Corrosion Cracking on Steam Turbine Rotor Grooves: Experiences and Countermeasures from EGAT Power Plants

POWER-GEN Asia Conference 2009
9th October 2009
IMPACT Exhibition & Convention Center
Bangkok, Thailand
Presentation Topics

- EGAT Steam Turbine Portfolio
- SCC on Steam Turbine Rotor
- Life Assessment and Evaluation
- Experiences and Countermeasures
- Summary
- Questions and Answers

SCC refers to Stress Corrosion Cracking
Presentation Topics

- EGAT Steam Turbine Portfolio
- SCC on Steam Turbine Rotor
- Life Assessment and Evaluation
- Experiences and Countermeasures
- Summary
- Questions and Answers
EGAT Steam Turbine Portfolio

EGAT Power Plants

Statistical Data

30 Steam Turbines
- 12 combined cycle plants
- 28 thermal plants

Largest 600 MW Oldest 35 years
Smallest 109 MW Newest <1 years
Average 274 MW Average 17 years

Total Generation Capacity 8.2 GW
EGAT Steam Turbine Portfolio

EGAT subsidiaries

Statistical Data

- 15 Steam Turbines
 - 10 combined cycle plants
 - 4 thermal plants
 - 1 co-generation plant

Largest 735 MW Oldest 29 years
Smallest 14 MW Newest 1 year
Average 240 MW Average 11 years

Total Generation Capacity 3.7 GW
Presentation Topics

- EGAT Steam Turbine Portfolio
- SCC on Steam Turbine Rotor
- Life Assessment and Evaluation
- Experiences and Countermeasures
- Summary
- Questions and Answers
SCC on Steam Turbine Rotor

550 MW Steam Turbine

Double Flow LP Rotor

Blade Attachment

Crack

SCC
SCC on Steam Turbine Rotor

SCC failure is the function of
- Stress Intensity
- Rotor Material
- Steam Environment

The probability of occurrence is high especially in attachments of the 3 last stages.

SCC could be found in all blade attachment designs but the most prevalent is fir tree type!
Presentation Topics

- EGAT Steam Turbine Portfolio
- SCC on Steam Turbine Rotor
- Life Assessment and Evaluation
- Experiences and Countermeasures
- Summary
- Questions and Answers
Life Assessment and Evaluation

(1)* Blade Removal
(2) Groove Cleaning
(3) Magnetic Particle Test
(4) Replication Test
(5) Crack Grinding
(6) Indication Measurement
(7)* Remaining Life Assessment

Evaluation
Critical Crack Depth and Crack Growth Rate

Note: (1) 10% sampling of all L-0 blades for life assessment is normally applied
(7) In case of determination of critical crack depth and crack growth rate, EGAT shall consult with OEM
Presentation Topics

- EGAT Steam Turbine Portfolio
- SCC on Steam Turbine Rotor
- Life Assessment and Evaluation
- Experiences and Countermeasures
- Summary
- Questions and Answers
Experiences and Countermeasures

- Experiences
- Countermeasures
 - Crack Grinding
 - Running (until next outage)
 - Blade Cutting or Removal
 - Steeple Machining
 - Welding Repair
 - Rotor Replacement
Experiences

- The first steam turbine life assessment program had been carried out since 1997.
- SCC were found in 11 out of 21 steam turbines that life assessments were done.
- SCC were found in L-0, L-1, and L-2 around 53%, 47%, and 20% respectively.
- The periods for steam turbine life assessments in EGAT range from 15 to 42 years with an average of 21 years.
- Several corrective actions had been implemented for example crack grinding, running until next outage, blade cutting or removal, steeple machining, welding repair, and rotor replacement respectively.
Countermeasure: Crack Grinding

Advantages
- one of low cost options
- first common corrective action to every crack found
- may stop further crack propagation

Disadvantages
- suitable for only shallow cracks
- crack may propagate at other areas instead

Plants
- SB-T (2 units)
- MM-T (5 units)

Short to Medium Term
Countermeasure: Running (until next outage)

Advantages
- economical choice

Disadvantages
- requires complete remaining life evaluation
- unacceptable outage duration unless remaining life assessment has been prepared in advance

Plants
- BPK-T (2 units) can extend for 5 years operation but need LP groove end face inspection every 2 years
Countermeasure: Blade Cutting or Removal

Advantages
- comparatively low investment cost
- suitable for unit which has very deep cracks

Disadvantages
- lost of performance or efficiency
- may require baffle plates in order to prevent consequence failure in other blade rows (~2 weeks)

Plants
- SB-T (2 units) with baffle plates install and 90% load limitation
- MM-T (1 unit) without baffle plates install and 75% load limitation
Countermeasure: Steeple Machining

CASE 1

CASE 2

- Advantages
 - will reset the SCC cycle
 - possible to reduce stress by enlarge groove radii

- Disadvantages
 - geometry limitation
 - high cost for maintenance
 - unfavorable extended outage (~6 months)
 - requires some modifications for blading

- Plants
 - SB-T (3 units) by dropped steeple machining in case 2

Medium to Long Term
Countermeasure: Welding Repair

Advantages
- will reset the SCC cycle
- can apply weld material with high resistance to SCC

Disadvantages
- high cost for maintenance
- unfavorable extended outage (~6 months)
- may have effect on rotor material particularly in HAZ

Plants
- SB-T (1 unit) by partial welding because steeple machining can’t eliminate some deep cracks

Medium to Long Term
Countermeasure: Rotor Replacement

- **Advantages**
 - archives thermal efficiency or heat rate improvement
 - higher SCC resistant by upgrade rotor material or improve design

- **Disadvantages**
 - high investment cost
 - requires time to implement (~2½ years)
 - should consider for compatibility with nearby components

- **Plants**
 - BPK-T (2 units) with 13.9 MW up from 550 MW each
 - MM-T (3 units) with 5.0 MW up from 300 MW each

Long Term
Countermeasures

Life Assessment

SCC? No

Operation (without restriction)

Yes

Remaining Life Assessment

Critical Crack Depth (a_c)
Crack Growth Rate (da/dt)

If $a \geq a_c$

If $a < a_c$

Blade Cutting or Removal

Operation (with restrictions)

Crack Grinding (all cracks)
Running (until next outage)

Operation (with restrictions)

Remaining Life Evaluation

Rotor Replacement
Welding Repair
Steeple Machining
Experiences & Countermeasures

<table>
<thead>
<tr>
<th>No.</th>
<th>Plant</th>
<th>COD (year)</th>
<th>Inspection (year)</th>
<th>SCC Indication</th>
<th>Sampling (/stage)</th>
<th>Countermeasures</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td>L-0</td>
<td>L-1</td>
<td>L-2</td>
</tr>
<tr>
<td>1</td>
<td>NB-T1*</td>
<td>1961</td>
<td>2003</td>
<td>No</td>
<td>No</td>
<td>No</td>
</tr>
<tr>
<td>2</td>
<td>SB-T1*</td>
<td>1970</td>
<td>1998</td>
<td>No</td>
<td>No</td>
<td>No</td>
</tr>
<tr>
<td>3</td>
<td>SB-T2*</td>
<td>1971</td>
<td>1997 2000</td>
<td>Yes</td>
<td>Yes</td>
<td>No</td>
</tr>
<tr>
<td>4</td>
<td>SB-T3</td>
<td>1974</td>
<td>1997 2000 2001 2006</td>
<td>Yes</td>
<td>Yes</td>
<td>-</td>
</tr>
<tr>
<td>5</td>
<td>SB-T4</td>
<td>1975</td>
<td>2001 2005</td>
<td>Yes</td>
<td>-</td>
<td>No</td>
</tr>
<tr>
<td>6</td>
<td>SB-T5</td>
<td>1977</td>
<td>1999 2002 2007</td>
<td>No</td>
<td>-</td>
<td>No</td>
</tr>
</tbody>
</table>

Note: NB-T is North Bangkok Thermal Power Plant and SB-T is South Bangkok Thermal Power Plant
Experiences & Countermeasures

<table>
<thead>
<tr>
<th>No.</th>
<th>Plant</th>
<th>COD (year)</th>
<th>Inspection (year)</th>
<th>SCC Indication</th>
<th>Sampling (/stage)</th>
<th>Countermeasures</th>
</tr>
</thead>
<tbody>
<tr>
<td>7</td>
<td>MM-T1*</td>
<td>1977</td>
<td>1998</td>
<td>- Yes -</td>
<td>5 grooves</td>
<td>Grinding</td>
</tr>
<tr>
<td>8</td>
<td>MM-T3*</td>
<td>1978</td>
<td>1999</td>
<td>Yes - -</td>
<td>100%</td>
<td>Grinding</td>
</tr>
<tr>
<td>9</td>
<td>MM-T4</td>
<td>1984</td>
<td>2002</td>
<td>No No No</td>
<td>2 groups</td>
<td>No Actions</td>
</tr>
<tr>
<td>10</td>
<td>MM-T5</td>
<td>1985</td>
<td>2008</td>
<td>No No No</td>
<td>2 groups</td>
<td>No Actions</td>
</tr>
<tr>
<td>11</td>
<td>MM-T6</td>
<td>1985</td>
<td>2005</td>
<td>No No No</td>
<td>2 groups</td>
<td>No Actions</td>
</tr>
<tr>
<td>12</td>
<td>MM-T7</td>
<td>1985</td>
<td>2007</td>
<td>No No No</td>
<td>2 groups</td>
<td>No Actions</td>
</tr>
<tr>
<td>13</td>
<td>MM-T8</td>
<td>1989</td>
<td>2004 2006 2008</td>
<td>Yes Yes No Yes</td>
<td>100% 12 17</td>
<td>Grinding</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>14</td>
<td>MM-T9</td>
<td>1990</td>
<td>2006 2007</td>
<td>Yes Yes Yes</td>
<td>100% N/A</td>
<td>Blade Removal</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>(without Baffle Plate installed)</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>LP Turbine Retrofit</td>
</tr>
<tr>
<td>15</td>
<td>MM-10</td>
<td>1991</td>
<td>2006 2009</td>
<td>Yes Yes No</td>
<td>100% 10</td>
<td>Grinding</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>LP Turbine Retrofit</td>
</tr>
</tbody>
</table>

Note: MM-T is Maemoh Thermal Power Plant
Experiences & Countermeasures

<table>
<thead>
<tr>
<th>No.</th>
<th>Plants</th>
<th>COD (year)</th>
<th>Inspection (year)</th>
<th>SCC Indication L-0</th>
<th>L-1</th>
<th>L-2</th>
<th>Sampling (/stage)</th>
<th>Countermeasures</th>
</tr>
</thead>
</table>
| 16 | BPK-T1 | 1983 | 2003 | No | Yes | No | 1 group at end face N/A | Grinding
Running (until next outage)
LP Turbine Retrofit |
| | | | 2005 | | | | | |
| 17 | BPK-T2 | 1983 | 2001 | No | Yes | No | 1 group at end face N/A | Grinding
Running (until next outage)
Running (until next outage)
Running (until next outage)
LP Turbine Retrofit |
| | | | 2003 | No | | Yes | | |
| | | | 2005 | No | Yes | No | | |
| | | | 2006 | No | | | | |

Running (until next outage) requires Remaining Life Assessment and Evaluation.

Note: BPK-T is Bangpakong Thermal Power Plant
Presentation Topics

- EGAT Steam Turbine Portfolio
- SCC on Steam Turbine Rotor
- Life Assessment and Evaluation
- Experiences and Countermeasures
- Summary
- Questions and Answers
Summary

- Root causes of SCC are the combination of applied stress, steam environment, and susceptible material.
- Determination for major root cause is crucial for long term operation.
- Steam turbines operating more than 15 years are prone to this failure mechanism.
- There is no unique countermeasure for solving SCC problem on LP rotor groove because of inspection, operation, and economical constraints.
- Critical crack depth, outage duration, spare parts, and cost benefit analysis are the key factors for deciding on which suitable action should be taken.
Presentation Topics

- EGAT Steam Turbine Portfolio
- SCC on Steam Turbine Rotor
- Life Assessment and Evaluation
- Experiences and Countermeasures
- Summary
- Questions and Answers
End of Presentation

Thank you for your attention!

Kobchai Wasuthalainan
kobchai.w@egat.co.th

Kanit Nangkala
kanit.na@egat.co.th

Steam Turbine Department
Mechanical Maintenance Division
Electricity Generating Authority of Thailand